anndata2ri#
Converter between Python’s AnnData and R’s SingleCellExperiment.
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
| 
 | ⇄ | 
 | 
- anndata2ri.converter = <rpy2.robjects.conversion.Converter object>#
- 
Includes rpy2.robjects.numpy2ri,rpy2.robjects.pandas2ri, andscipy2ri.
- anndata2ri.set_ipython_converter(ipython=None, converter=None)#
- Set the default converter for - rmagicin IPython.- Parameters:
- ipython InteractiveShell|None(default:None)
- The IPython instance to set the converter for. If not specified, the current IPython instance is used. 
- converter conversion|None(default:None)
- The converter to use. If not specified, - converteris used.
 
- ipython 
 
anndata2ri.scipy2ri#
Convert scipy.sparse matrices between Python and R.
For a detailed comparison between the two languages’ sparse matrix environment, see issue #8.
Here’s an overview over the matching classes (note that dtype=float32 is also supported):
| R | Python | 
|---|---|
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | 
- anndata2ri.scipy2ri.converter = <rpy2.robjects.conversion.Converter object>#
- The - Converterfor- scipy.sparse.- Includes - rpy2.robjects.numpy2ri.
- anndata2ri.scipy2ri.supported_r_matrix_classes(types=frozenset({'d', 'l', 'n'}), storage=frozenset({'C', 'R', 'T', 'di'}))#
- Get supported classes, possibly limiting data types or storage types. - Parameters:
- types Iterable[Literal['d','l','n']] |Literal['d','l','n'] (default:frozenset({'l', 'n', 'd'}))
- Data type character(s) from - supported_r_matrix_types
- storage Iterable[Literal['C','R','T','di']] |Literal['C','R','T','di'] (default:frozenset({'di', 'T', 'C', 'R'}))
- Storage mode(s) from - supported_r_matrix_storage
 
- types 
- Returns:
- frozenset[- str] – All supported classes with those characters
 
- anndata2ri.scipy2ri.supported_r_matrix_storage = frozenset({'C', 'R', 'T', 'di'})#
- The Matrix storage types supported by this module; Column-sparse, Row-Sparse, Triplets, and DIagonal. 
- anndata2ri.scipy2ri.supported_r_matrix_types = frozenset({'d', 'l', 'n'})#
- The Matrix data types supported by this module; Double, Logical, and patterN.